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The formulation of the nonlinear σ -model in terms of flat connection allows the con-
struction of a perturbative solution of a local functional equation by means of cohomo-
logical techniques which are implemented in gauge theories. In this paper we discuss
some properties of the solution at the one-loop level in D = 4. We prove the validity of
a weak power-counting theorem in the following form: although the number of diver-
gent amplitudes is infinite only a finite number of counterterms parameters have to be
introduced in the effective action in order to make the theory finite at one loop, while
respecting the functional equation (fully symmetric subtraction in the cohomological
sense). The proof uses the linearized functional equation of which we provide the gen-
eral solution in terms of local functionals. The counterterms are expressed in terms of
linear combinations of these invariants and the coefficients are fixed by a finite number
of divergent amplitudes. These latter amplitudes contain only insertions of the compos-
ite operators φ0 (the constraint of the nonlinear σ -model) and Fµ (the flat connection).
The structure of the functional equation suggests a hierarchy of the Green functions. In
particular once the amplitudes for the composite operators φ0 and Fµ are given all the
others can be derived by functional derivatives. In this paper we show that at one loop
the renormalization of the theory is achieved by the subtraction of divergences of the
amplitudes at the top of the hierarchy. As an example we derive the counterterms for
the four-point amplitudes.
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1. INTRODUCTION

Since a long time people realized that the nonlinear σ -model cannot be
renormalized in a symmetric way by imposing global chiral symmetry already at
one loop (Appelquist and Bernard, 1981; Ecker and Honerkamp, 1971; Tataru,
1975). Some of the unwanted (chiral breaking) terms can be disposed of by
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redefinition of the field (quartic divergences) (Charap, 1970; Gerstein et al., 1971;
Honerkamp and Meetz, 1971; Tataru, 1975). However some divergent terms of
the one-loop off-shell pion-pion scattering amplitude still violate chiral symmetry
and can be reabsorbed by redefinition of the field only if derivatives are allowed
(Appelquist and Bernard, 1981). This strategy of removing the divergences never
turned to a consistent program both for technical difficulty and for the impossibility
of fixing the necessary finite subtractions. From these previous experiences it is
clear that the renormalization of the nonlinear σ -model cannot be achieved by
using chiral-invariant counterterms only. In particular one has to find a technique
to implement the idea of field redefinition. This problem turns out to be closely
related to the issue of identifying the good symmetry of the theory, i.e. the one
that survives quantization.

We discuss here a unified solution (Ferrari, 2005) to both problems which
makes use of a single scalar external source coupled to the constrained φ0 field.
The introduction of the composite operator φ0 turns out to be unavoidable in order
to discuss the implementation of chiral symmetry at the quantum level by means
of the Ward-Takahashi identities.

Let us briefly outline the formalism by which we renormalize at one loop the
nonlinear σ model. We consider (Ferrari, 2005) the scalar fields (φa) as parameters
of a flat connection (gauge field with zero field strength). A local functional
equation encoding the underlying local invariance property of the Haar measure
in the path-integral

δφa(x) = 1

2
αa(x)φ0(x) + g

2
εabcφb(x)αc(x), δφ0(x) = −g2

2
αa(x)φa(x) (1)

is then derived. Quantization is performed by imposing the functional equation
on the 1-PI vertex functional in D-dimensions. The functional equation embodies
the relevant symmetry of the full quantum theory .

The projection on the physical value D → 4 requires a recursive subtraction
procedure of the poles. The subtraction is implemented by a set of counterterms
in the Feynman rules in such a way to respect the functional equation.

The counterterms are determined by exploiting a hierarchy inherent to the
solutions of the functional equation. Since the counterterms have to be local
functionals, the analysis of the functional equation can be limited to local solutions.

In this paper we provide a general classification of the local functionals
which are solutions of the linearized equation. This is the relevant equation for
the counterterms at one loop level. Moreover it is the equation which controls all
possible finite subtractions in the dimensional renormalization scheme.

The invariants are integrated formal power series of local monomials in
the pion fields φa , the external source Jaµ of the flat connection F

µ
a and the

external source K0 of the composite operator φ0 (the constraint in the nonlinear
σ -model). They can be classified by cohomological methods implemented in
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gauge theories. This provides a useful insight into the underlying geometry of the
quantum nonlinear σ model in D = 4.

The solution is governed by a weak power-counting theorem: although an
infinite number of divergent amplitudes exists at one loop-level, only a finite
number of them has to be evaluated in order to make the theory finite at one
loop level while respecting the functional equation (fully symmetric subtraction
in the cohomological sense). They correspond to amplitudes involving only the
insertions of the composite operators φ0 and F

µ
a , i.e. the amplitudes obtained by

functional differentiation of the 1-PI vertex functional w.r.t. K0’s and Jµ’s. These
amplitudes are at the top of the hierarchy implied by the functional equation
(ancestor amplitudes). They allow to fix uniquely the coefficients of the invariants
entering in the solution which parameterizes the counterterms.

This is an extremely powerful tool for dealing with the intricacies of diver-
gences of the nonlinear σ -model in D = 4, since all the other counterterms (i.e.
those involving at least one φ field) can be derived from this solution by projec-
tion on the relevant monomials. We stress that when expanded on the basis of
monomials in φ’s and the external sources the solution contains an infinite number
of terms, associated with the divergences of amplitudes with an arbitrarily high
number of pion legs. All of them are needed in order to perform the one-loop
renormalization of the model. It is a remarkable fact that they can be rewritten in
terms of a finite number of invariants controlled by a finite number of independent
coefficients.

As an example we obtain the counterterms for the set of four-point ampli-
tudes. Moreover we apply the method to prove a simple criterion establishing
the convergence of amplitudes which are divergent by naive power-counting but
whose convergence is implied by the local functional equation.

This work is part of a program aiming to provide finite Feynman amplitudes at
every order in the loop expansion of the nonlinear σ model in D = 4 in a symmetric
scheme. The phenomenological implications of this subtraction strategy remain
an open problem since at every order in h̄ there is a new finite set of independent
parameters associated to in principle admissible local counterterms. This aspect is
shared by other approaches typically focused on the problem of giving a meaning
to the loop corrections in chiral lagrangian models (Bijnens et al., 2000; Gasser
and Leutwyler, 1984, 1985).

The paper is organized as follows. In Section 2 we describe the subtraction
procedure and the inherent weak power-counting theorem. In Section 3 we set
up the cohomological framework needed to classify the local solutions of the
linearized functional equation. The most general local solution is characterized in
Section 4. Section 5 is devoted to the parameterization of the one-loop divergences
in D = 4 in terms of local invariant solutions. As an application the counterterms
of four-point amplitudes are derived in Section 6. In Section 7 we provide a
comparison with similar results obtained in chiral lagrangian theories. Conclusions
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are given in Section 8. Appendix A finally contains a derivation of the weak-power-
counting formula.

2. SUBTRACTION PROCEDURE

In this section we deal with the nonlinear σ -model in the formulation given
by the functional equation (Ferrari, 2005) which one derives from the local gauge
transformations on the associated flat connection

Fµ = i

g
�∂µ�† = 1

2
Faµτa,

� = 1

mD

(φ0 + igτ aφa), �†� = 1, det � = 1, φ2
0 + g2φ2

a = m2
D.

(2)

τ a are the Pauli matrices and mD = mD/2−1. m is the mass scale of the theory.
The local transformations are

�′ = U�,

F ′
µ = UFµU † + i

g
U∂µU †. (3)

The local functional equation for the 1-PI generating functional follows from the
standard path-integral formulation by using the classical action in D dimensions

	(0) =
∫

dDx

(
1

2
∂µφa∂

µφa + 1

2
g2 φa∂µφaφb∂

µφb

φ2
0

+ K0φ0 + JaµFµ
a

)
. (4)

By exploiting the invariance of the Haar measure in the path-integral under the
local gauge transformations one obtains
(

m2
D

2
∂µ δ	

δJ
µ
a

+ g2K0φa + δ	

δK0

δ	

δφa

+ gεabc

δ	

δφb

φc + 2D

[
δ	

δJ

]µ

ab

Jbµ

)
(x) = 0

(5)
with

D[X]µab = ∂µδab − gεabcX
µ
c . (6)

In order to construct the perturbative series we notice that 	(0) in Eq. (4)
is a solution to Eq. (5) and therefore we can read immediately from Eq. (4) the
Feynman rules.

The 1-PI generating functional obtained from these rules is a solution to
Eq. (5) in D dimensions. The projection of the D-dimensional solution on the
physical value D → 4 requires a recursive subtraction procedure.
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The subtraction procedure follows the hierarchy implied by Eq. (5). This
means that we fix at first the counterterms for the amplitudes involving only
the composite operators F

µ
a and φ0 (derivatives of 	 only w.r.t. J

µ1
a1 , . . . , J

µn
an

,

. . . , K0, . . .). A simple dimensional analysis indicates that the removal of the poles
in D = 4 has to be done on the Laurent expansion of the normalized amplitude

(mD

m

)2(n−1)
	J

µ1
a1 ...J

µn
an

. (7)

Equation (5) then constrains the correct factor for the amplitudes involving
the fields φa and the composite operator φ0.

We denote by 	
(n)
pol the corresponding pole part of the Laurent expansion of

the n-th order vertex functional 	(n).
Our conjecture is that order by order we can modify the Feynman rules by

adding the counterterms required by dimensional subtraction, in such a way that
Eq. (5) is satisfied (symmetric subtraction). At one loop level the removal of the
pole part of the divergent amplitudes is by means of a solution of the linearized
equation

Sa

(
	

(1)
pol

) =
(

m2
D

2
∂µ

δ	
(1)
pol

δJ
µ
a

− 2gεabc

δ	
(1)
pol

δJcµ

J
µ

b + δ	(0)

δK0

δ	
(1)
pol

δφa

+ δ	
(1)
pol

δK0

δ	(0)

δφa

+g εabc

δ	
(1)
pol

δφb

φc

)
(x) = 0 (8)

since at this order Eq. (5) coincides with the linearized Eq. (8).
The study of the solutions of Eq. (8) in terms of local functionals provides

a necessary tool in order to make consistent the subtraction procedure outlined
above. Their coefficients have to be chosen in such a way to remove the pole parts
of the D-dimensional amplitudes.

As will be shown, these coefficients are uniquely fixed by the pole part of the
divergent amplitudes which only involve the composite operators Faµ and φ0 (i.e.
1-PI Green functions obtained by differentiating 	 w.r.t. the sources Jaµ and K0).

At each order n in the loop expansion only a finite number of them exists.
There is indeed a weak power-counting for the external sources Jaµ and K0. A
n-loop graph with NJ insertions of the composite operator Faµ, NK0 insertions
of the composite operator φ0 and no φ external legs is superficially convergent
provided that

NJ + 2NK0 > (D − 2)n + 2. (9)

The derivation of the above formula is given in Appendix A. Equation (9) fixes
the upper bound on the number of independent ancestor amplitudes.
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The solutions of Eq. (8) will be given in terms of linear combinations of
invariant local functionals. The coefficients of these invariants are in principle free
parameters and they are constrained by the functional Eq. (5). The hierarchical
structure of this equation might reduce drastically the number of independent
divergent amplitudes to be evaluated. The simplest example of this is provided
by the one-loop corrections where only the monomials in J and K0 and their
derivatives (present in the invariant solution) need to be computed in terms of the
pole part of the amplitudes.

3. BACKGROUND FORMALISM

In order to classify the solutions to Eq. (8) it is convenient to introduce a set
of local parameters ωa(x) and rewrite Eq. (8) in the following equivalent form

δ	
(n)
pol ≡

∫
d4x

(
−m2

D

4
∂µωa

δ	
(n)
pol

δJ
µ
a

− gεabcωaJ
µ

b

δ	
(n)
pol

δJcµ

+
(

ωa

2

δ	(0)

δK0
+ g

2
εabcφbωc

)
δ	

(n)
pol

δφa

+ ωa

2

δ	(0)

δφa

δ	
(n)
pol

δK0

)
= 0 (10)

The geometrical meaning of the above equation becomes clear after the
rescaling

J̃aµ = − 4

m2
D

Jaµ. (11)

J̃aµ transforms as a (background) gauge connection under the action of δ while
� = 1

mD
(φ0 + igτ aφa) transforms in the fundamental representation. For later use

we notice that the transformation of K0 is proportional to the classical equation of
motion for φa .

There is a BRST differential s (Becchi et al., 1975, 1976; Piguet and Sorella,
1995) associated with the transformation in Eq. (10). It is obtained by promoting
the parameters ωa to classical local anticommuting parameters. Global chiral
symmetry has been discussed in a similar fashion with the use of constant ghosts
in Blasi and Collina (1987). The action of s on J̃aµ, φa and K0 is induced by the
action of δ, i.e.

sJ̃aµ = ∂µωa + gεabcJ̃bµωc, sφa = 1

2
ωaφ0 + 1

2
gεabcφbωc,

sK0 = 1

2
ωa

δ	(0)

δφa

. (12)
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The operator s becomes nilpotent provided that we extend its action to ωa by
setting

sωa = −1

2
gεabcωbωc. (13)

A conserved Faddeev-Popov (��) charge can be introduced by requiring that all
variables with the exception of ωa are ��-neutral and ��(ωa) = 1.

Equation (10) is equivalent to

s	
(n)
pol = 0 (14)

since there are no variables with negative ��-charge (thus forbidding s-exact
solutions Y (n) = sX(n), where X(n) has ��-charge −1, which automatically fulfill
sY (n) = 0 by the nilpotency of s).

The advantage of the BRST formulation of the local functional equation
provided by Eq. (14) is that it allows to make use of the cohomological techniques
implemented in gauge theories (Barnich et al., 2000; Gomis et al., 1995; Henneaux
and Wilch, 1998; Piguet and Sorella, 1995) in order to derive an exhaustive
classification of the solutions.

4. SOLUTIONS OF THE LINEARIZED FUNCTIONAL EQUATION

We now move to the study of Eq. (14). The recursive subtraction of the poles
is implemented by a set of counterterms in the Feynman rules. It is required that
they are local functionals solution of Eq. (14).

For renormalizable theories the power-counting theorem puts dimensionality
bounds on them and so this limits the number of independent monomials. For
non-renormalizable theories as the one we are dealing with this constraint on the
number is no more present.

On general grounds the required counterterms might in some cases reduce
to a polynomial if the perturbative expansion is cut to a finite loop order. We will
show that this is not the case for the nonlinear σ -model even at one loop level:
there exist divergent amplitudes involving any number of φ’s.

This apparently wild behavior is tamed by an extremely powerful hierarchy
when Eq. (14) is used in order to parameterize the one-loop divergences. Indeed
it turns out that the counterterms are controlled by a linear combination of a finite
number of invariants which are solutions to Eq. (14), as a consequence of the weak
power-counting on K0 and Jaµ. Once the relevant linear combination is known, all
the divergences for amplitudes involving any number of φ’s and external sources
are obtained by projection on the relevant monomial in φ’s, K0 and Jaµ. Equation
(14) thus provides an extremely powerful and efficient tool for the classification
of the UV divergences in the model at hand.
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In order to exploit Eq. (14) we first need to find the most general solution
to Eq. (14) in the space of integrated local functionals (in the sense of local
formal power series) spanned by φa , K0, Jaµ and their derivatives. This amounts
to characterize the cohomology of the nilpotent differential s in Eq. (12) in the
sector of ��-neutral local functionals.

The required solution can be found rather easily by noticing that the following
combination

K0 = m2
DK0

φ0
− φa

δS0

δφa

(15)

is s-invariant. In the above equation we have set

S0 = m2
D

8

∫
dDx

(
Faµ + 4

m2
D

Jaµ

)2
. (16)

By exploiting the invariance of S0 under s we obtain

sK0 = m2
D

2φ0
ωa

δ	(0)

δφa

+ g2m2
D

2φ2
0

K0 ωaφa +
[
s,−φa

δ

δφa

]
S0

= m2
D

2φ0
ωa

δS0

δφa

− g2m2
D

2φ2
0

K0 ωaφa + g2m2
D

2φ2
0

K0 ωaφa

+
[
s,−φa

δ

δφa

]
S0

= m2
D

2φ0
ωa

δS0

δφa

+
[
s,−φa

δ

δφa

]
S0. (17)

By taking into account that S0 does not depend on K0 we also get
[
s,−φa

δ

δφa

]
S0 = −1

2
ωaφ0

δS0

δφa

− g2

2φ0
ωaφ

2
b

δS0

δφa

. (18)

Use of Eq. (18) into Eq. (17) yields finally

sK0 = 1

2φ0
ωa

(
m2

D − g2φ2
b

) δS0

δφa

− 1

2
ωaφ0

δS0

δφa

= 1

2
ωaφ0

δS0

δφa

− 1

2
ωaφ0

δS0

δφa

= 0 (19)

where use has been made of the last of Eqs. (2).
Since the transformation in Eq. (15) is invertible we can change variables

and use φa , Jaµ and K0. K0 is invariant under s while the s-variation of φa and
Jaµ does not contain K0.

Hence the computation of the cohomology of s in Eq. (12) in the ��-
neutral sector reduces to that of the BRST differential for the gauge group SU (2)
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(non-linearly represented on the group element �) in the space of local functionals
with zero ��-charge. This is easily seen by identifying the SU (2) connection
with J̃aµ in Eq. (11), while φa are the parameters controlling the non-linear
representation of the gauge group by the matrix �. K0 is an additional variable
which does not transform under s.

The cohomology of the BRST differential for non-linear representations of
the gauge group SU (2) is known in full generality (Barnich et al., 2000; Henneaux
and Wilch, 1998). This allows us to state the following

Proposition. The most general local solution to Eq. (14) is an integrated
BRST (Eq. (12))-invariant local formal power series constructed from the invariant
combination K0 and its ordinary derivatives, the undifferentiated group element
� and the combination F

µ
a + 4

m2
D

J
µ
a and its subsequent covariant derivatives w.r.t.

Fµ.
The proof of this result is based on cohomological techniques and is detailed

in Barnich et al. (2000), Henneaux and Wilch (1998). Here we only wish to make
a few comments.

The combination

Fµ
a + 4

m2
D

Jµ
a = Fµ

a − J̃ µ
a (20)

is the difference of two SU (2) connections and thus it transforms in the adjoint
representation of SU (2):

s
(
Fµ

a − J̃ µ
a

) = gεabc

(
F

µ

b − J̃
µ

b

)
ωc. (21)

Moreover we notice that covariant derivatives have to be understood only w.r.t. Fµ.
Covariant derivatives w.r.t. J̃ µ can also be used in order to construct invariants.
However these invariants are not independent, since a covariant derivative w.r.t.
J̃ µ can be replaced by a covariant derivative w.r.t. Fµ plus a term containing the
combination Fµ + 4

m2
D

Jµ.
Finally in the sector with at least one derivative there is still the freedom to

perform an integration by parts in order to reduce the number of independent in-
variants. Once this ambiguitiy is taken into account one gets the set of independent
invariants on which to project the solutions to Eq. (14).

The above Proposition is a very powerful result allowing for a simple con-
structive characterization of the solutions to Eq. (14). In the next section we will
show how to make use of it in order to specify completely the whole set of one-loop
counterterms.

5. ONE-LOOP COUNTERTERMS

From the above discussion we can deal with the one-loop corrections in
D = 4 by writing the most general local solution to Eq. (14) compatible with the
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weak power-counting. Since Eq. (14) is linear, the solution is a linear combination
of the following invariants (all covariant derivatives are understood w.r.t. the flat
connection Fµ):

I1 =
∫

dDx

[
Dµ

(
F + 4

m2
D

J

)
ν

]
a

[
Dµ

(
F + 4

m2
D

J

)ν]
a

,

I2 =
∫

dDx

[
Dµ

(
F + 4

m2
D

J

)µ]
a

[
Dν

(
F + 4

m2
D

J

)ν]
a

,

I3 =
∫

dDx εabc

[
Dµ

(
F + 4

m2
D

J

)
ν

]
a

(
F + 4

m2
D

J

)µ

b

(
F + 4

m2
D

J

)ν

c

,

I4 =
∫

dDx

(
m2

DK0

φ0
− φa

δS0

δφa

)2

,

I5 =
∫

dDx

(
m2

DK0

φ0
− φa

δS0

δφa

)(
F + 4

m2
D

J

)2

,

I6 =
∫

dDx

(
F + 4

m2
D

J

)2 (
F + 4

m2
D

J

)2

,

I7 =
∫

dDx

(
F + 4

m2
D

J

)µ

a

(
F + 4

m2
D

J

)ν

a(
F + 4

m2
D

J

)
bµ

(
F + 4

m2
D

J

)
bν

. (22)

A few comments on this list are in order: I1 and I2 describe the pole part of
the 2-point function 	

(1)
JJ . I3 is the only invariant that can yield the counterterm

associated with 	
(1)
JJJ . Finally I6 and I7 control the pole part of the 4-point function

	
(1)
JJJJ , while the 2-point function 	

(1)
K0K0

and the 3-point function 	
(1)
K0JJ are related

to I4 and I5. We notice that the functional equation in Eq. (5) allows to derive
	

(1)
K0K0

and 	
(1)
K0JJ from 	

(1)
JJJJ , 	

(1)
JJJ and 	

(1)
JJ . Therefore only three amplitudes

have to be computed.
The correct linear combination of the invariants has to be found by compar-

ison with the solution of Eq. (5) which is valid in D-dimensions. Therefore the
coefficients must contain the correct power of mD . Once these coefficients have
been established all the one-loop divergences for amplitudes involving any number
of φ’s are described by the projection of the solution on the relevant monomial. In
fact all the amplitudes involving at least one φ field can be derived by subsequent
use of the functional Eq. (5).
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We denote by 	̂(1) = −	
(1)
pol the one-loop divergent counterterms.

By direct computation one finds 	̂(1)[JJ ] and 	̂(1)[JJJ ] (Ferrari, 2005)

	̂(1)[JJ ] = 1

D − 4

(
m

mD

)2
g2

12π2m4

∫
dDx Jµ

a (�gµν − ∂µ∂ν)J ν
a ,

	̂(1)[JJJ ] = 1

D − 4

1

3π2

( g

m2

)3
(

m

mD

)4 ∫
dDx εabc∂µJaνJ

µ

b J ν
c . (23)

This fixes the coefficients of I1, I2, I3 which enter into the solution in the combi-
nation

− 1

D − 4

1

12

g2

(4π )2

m2
D

m2
(I1 − I2 − gI3) . (24)

Direct computation of the pole part of 	
(1)
JJJJ gives

	̂(1)[JJJJ ] = 1

D − 4

1

3(4π )2

(
2g

m2

)4 (
m

mD

)6

∫
dDx

(
JaµJµ

a JbνJ
ν
b + 2JaµJaνJ

µ

b J ν
b

)
.

(25)

This in turn fixes the coefficients of I6 and I7 in the combination

1

D − 4

1

(4π )2

g4

48

m2
D

m2

(
I6 + 2I7

)
. (26)

Finally from the counterterms

	̂(1)[K0K0] = 1

D − 4

3g4

2m2

1

(4π )2

∫
dDx K2

0 (x) (27)

and

	̂(1)[K0JJ ] = 1

D − 4

8g4

m5

1

(4π )2

(
m

mD

)3 ∫
dDx K0(x)J 2(x) (28)

we get the coefficients of I4 and I5:

1

D − 4

1

(4π )2

3

2

g4

m2m2
D

I4 + 1

D − 4

1

(4π )2

1

2

g4

m2
I5. (29)

Therefore the full set of one-loop divergent counterterms is given by the functional

	̂(1) = 1

D − 4

[
− 1

12

g2

(4π )2

m2
D

m2
(I1 − I2 − gI3) + 1

(4π )2

g4

48

m2
D

m2
(I6 + 2I7)
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+ 1

(4π )2

3

2

g4

m2m2
D

I4 + 1

(4π )2

1

2

g4

m2
I5

]
. (30)

These are the counterterms to be used in D-dimensional perturbation theory. This
is the reason why mD is put in evidence. Moreover the presence of mD both in
the coefficients and the invariants fixes non-trivial finite parts of the counterterms
beyond the pole part in 1

D−4 . These finite parts are non-trivial since they are needed
to maintain the validity of the functional equation after subtraction.

Equation (30) is not the most general solution. One can always add finite
solutions of sX = 0. It is a choice that we make in this paper to perform a minimal
subtraction on the basis of simplicity and elegance.

The explicit form of the counterterms (30) allows us to comment on two
further important points.

One is the issue of chiral invariance of the counterterms at one loop. By
direct inspection one sees that, after putting J a

µ = K0 = 0, I1, I2, I3, I6 and I7

are chiral invariant (global transformation) while both I4 and I5 are not chiral
invariant. Therefore the counterterms at one loop do not maintain chiral invariance
as noted in Appelquist and Bernard (1981), Ecker and Honerkamp (1971), and
Tataru (1975).

As a last point Eq. (30) accounts for the fact that the chiral-breaking coun-
terterms are associated to the renormalization of the insertion of the composite
operator φ0 coupled to the source K0.

6. EXAMPLES

The use of Eq. (30) is straightforward. One needs only to perform the relevant
functional derivatives of the local functional 	̂(1).

As an example we can get the counterterm for the four-point function by
projecting 	̂(1) in Eq. (30) on the monomials involving φa , K0 and Jaµ. First we
consider the four-point function of the scalar fields. By direct computation the
projection of the combination I1 − I2 − gI3 on the relevant monomials is zero,
while the contribution from I6 + 2I7 and I4, I5 gives rise to

	̂(1)[φφφφ] = − 1

D − 4

g4

m2
Dm2(4π )2

∫
dDx

[
− 1

3
∂µφa∂

µφa∂νφb∂
νφb − 2

3
∂µφa∂νφa∂

µφb∂
νφb

− 3

2
φa�φaφb�φb − 2φa�φa∂µφb∂

µφb

]
. (31)

The terms in the first line between square brackets are associated to global chiral-
invariant counterterms (Appelquist and Bernard, 1981; Faddeev and Slavnov,
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1973). They are generated by the combination I6 + 2I7. These invariants are
constructed from the geometrical quantities given by the flat connection Fµ and
the background connection J̃µ. The terms in the second line are obtained from the
projection of the invariants I4 and I5, which are controlled by 	̂

(1)
K0K0

and 	̂
(1)
K0JJ .

The latter encode the renormalization of the external source K0. In Appelquist
and Bernard (1981), Tataru (1975) they were obtained by means of a (non-locally
invertible) field redefinition of φa .

We also provide the counterterms for the remaining four-point functions. By
projection on the relevant monomials we obtain

	̂(1)[JJJφ] = 1

D − 4

8

(4π )2

g4

m2

1

m5
D∫

dDx φa

(
2∂J aJ 2 − 8

3
∂ν

(
J ν

a J 2
) − 4

3
∂ν

(
J ν

c J µ
c Jaµ

))
(32)

	̂(1)[JJφφ] = − 1

D − 4

4

(4π )2

g4

m2

1

m4
D

∫
dDx

(
4

3
∂µφa∂

µφaJ
2 + ∂µφ2

a∂
µJ 2

+1

2
φcφb∂Jb∂Jc − 4

3
∂µφc∂µφbJ

ν
c Jbν

+8

3
φc∂µφb

(
J ν

c ∂νJ
µ

b − J ν
b ∂νJ

µ
c

) + 1

2
φcφbJ

ν
c ∂ν∂Jb

−2

3
∂µφcφb

(
∂µJ ν

c Jbν − J ν
c ∂µJbν

)

− 8

3
∂µφc∂νφbJ

ν
c J

µ

b − 4

3
∂µφc∂νφcJ

ν
b J

µ

b

)
(33)

	̂(1)[Jφφφ] = 1

D − 4

2g4

m2(4π )2

1

m3
D

∫
dDx

(
1

2
Jµ

a ∂µφa�φ2 − Jµ
a ∂µφa∂νφd∂

νφd

+ Jµ
a φa∂µ(∂νφd∂

νφd ) − 3

2
Jµ

a φa∂µ�φ2

− 2

3
Jµ

a φc(�gµν − ∂µ∂ν)(∂νφcφa) + 2Jµ
a ∂µφc∂

νφa∂νφc

)

(34)

	̂(1)[K0K0φφ] = 1

D − 4

1

(4π )2

3

2

g6

m2m2
D

∫
dDx K2

0 φ2
a (35)
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	̂(1)[K0Jφφ] = − 1

D − 4

1

(4π )2

4g5

m2m3
D

∫
dDx K0εabc∂µφbφcJ

µ
a . (36)

We would like to make some additional comments on Eq. (30). First we notice that
the expansion of 	̂(1) on a basis of monomials in φ, K0, Jµ and their derivatives
contains terms of arbitrarily high order in the number of φ’s. Therefore there is an
infinite set of divergent amplitudes involving the fields φ. Nevertheless they are
all controlled by Eq. (30), which contains only a finite number of invariants.

Equation (30) provides a full control on the divergences of the theory. For
instance the amplitude 	

(1)
JJJJφ is divergent by simple power-counting. It is con-

vergent due to the cancellations implied by the functional equation in Eq. (5), as
it can be explicitly checked. This can be seen in an easier way from Eq. (30) by
noticing that the projection of 	̂(1) on JJJJφ is zero.

More generally the following simple criterion holds true: whenever the pro-
jection of 	̂(1) on some monomial is zero, the corresponding amplitude is finite.

7. COMPARISON WITH CHIRAL LAGRANGIAN THEORIES

In the present work we focused on the symmetric subtraction of the diver-
gences in the nonlinear sigma model and therefore particular care has been put
to write the most general counterterms in D-dimensions (addressing in particular
their dependence on mD). Moreover the powerful strategy, based on the hierar-
chy of the functional equation, plays a crucial role for the validity of the weak
power-counting.

The counterterms obtained in Eq. (30) can be compared with a similar result
in chiral lagrangian models. In order to make the comparison an easy task we use
in this Section a set of notations very close to the ones adopted in the specialized
literature on chiral perturbation theory.

The counterterms of the chiral lagrangian will be written in terms of the
invariants I1 − I7 by means of two quantities that are essential in our approach:
the external currents ξ i coupled to the fields Ui are introduced as a Legendre
conjugate

ξ i = −δ	(0)

δUi
, (37)

and moreover the flat connection is introduced by

Fµ = iU∂µU † = F i
µ

τ i

2
(38)

where

U = U0 + iU iτ i . (39)
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The tree-level effective action is

	(0) =
∫

d4x

(
f 2

4
Tr(Fµ − Lµ)2 + ξ 0U 0

)
. (40)

In this notations the s operator becomes (in the zero ghost number sector)

s =
∫

d4x
ωa

2

(
(δabU 0 + εabcUc)

δ

δUb
+ δ	(0)

δUa

δ

δξ 0

+ ( − 2∂µδab + 2εabcLc
µ

) δ

δLb
µ

)
. (41)

One gets

sF i
µ = ∂µωi + εijkF j

µωk,

sLi
µ = ∂µωi + εijkLj

µωk. (42)

It is straightforward to find the transformation properties of ξ i :

sξ i = s

(
−δ	(0)

δUi

)
= −

[
s,

δ

δUi

]
	(0) − δ

δUi

(
s	(0)

)

= +ωi

2
ξ 0 − εiabωaξb. (43)

Moreover

sξ 0 = ωa

2

δ	(0)

δUa
= −1

2
ωaξa. (44)

Therefore (ξ 0, ξ i) transform like (U 0, Ui). The transformation properties in Eqs.
(42), (43) and (44) allow the conctruction of invariant local counterterms by using
the covariant derivatives

∇µU ≡ (∂µ − iLµ)U = i(F − L)µU. (45)

An useful relation can be obtained from the identity

s

∫
d4xTr (F − L)2 = 0 (46)

i.e.

1

2
(δabU 0 + εabcUc)

δ

δUb

∫
d4xTr (F − L)2 = −2(∂µδab − εabcLc

µ)(F − L)µb

= −2D[L]abµ(F − L)µb . (47)
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The square is

(δbb′ − UbUb′
)

δ

δUb

∫
d4xTr (F − L)2 δ

δUb′

∫
d4yTr (F − L)2

= 16
(
D[L]abµ(F − L)µb

)2
. (48)

By using Eq. (48) one gets
∫

d4x(ξ 0ξ 0 + �ξ 2) =
∫

d4x

(
ξ 0ξ 0 +

[
− δ

δUb

∫
d4y

f 2

4
Tr (F − L)2 + ξ 0 Ub

U 0

]2
)

=
∫

d4x

( (
ξ 0

U 0
− Ub δ

δUb

∫
d4y

f 2

4
Tr (F − L)2

)2

+ 1

4

(
D[L]abµ(F − L)µb

)2
)

,

(49)

where the last two terms can be identified as I4 and I2 in Eq. (22).
The correspondence with our conventions is obtained by setting

f = mD, g = 1, U 0 = 1
mD

φ0, Ui = 1
mD

φi,

ξ 0 = mDK0, J̃
µ

i = Lµi. (50)

The correspondence with the notations used in Gasser and Leutwyler (1984) is
obtained by the following prescription

f = F, ξ 0 = F 2χ0, χ̃ = 0, Li
µ =

(
ai

µ + vi
µ

)
, ai

µ = vi
µ. (51)

By using Eqs. (50) and (51) we are in a position to express the chiral invariants of
Gasser and Leutwyler (1984) on the basis given by the invariants I1 − I7:∫

d4x (∇µUT ∇µU )2 = 1

16
I6,

∫
d4x (∇µUT ∇νU )(∇µUT ∇νU ) = 1

16
I7,

∫
d4x (χT U )2 = 1

m4
I4,

∫
d4x (∇µχT ∇µU ) = 1

4m2
I5 − 1

4
I2,

∫
d4x (UT FµνFµνU ) = −1

2
I1 + 1

2
I2 + I3 − 1

4
I6 + 1

4
I7,

∫
d4x (∇µU )T Fµν(∇νU ) = 1

4
I3 + 1

8
(I7 − I6),

∫
d4x (χT χ ) = 1

m4
I4 + 1

4
I2,
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∫
d4x TrFµνF

µν = −2I1 + 2I2 + 4I3 − I6 + I7. (52)

By making use of the above correspondence table it is then easy to verify that
the divergent part of the counterterms obtained in Gasser and Leutwyler (1984)
coincide with those given by Eq. (30).

One should however realize that the D-dimensional counterterms in
Eq. (30) have a non-trivial dependence on mD . The latter gives rise to finite
parts which are crucial in order to maintain the validity of the functional equation
in the recursive subtraction procedure at higher orders in the loop expansion. See
for instance the explicit calculation at the two-loop level in Ferrari and Quadri
(2006).

8. CONCLUSIONS

In this paper we have shown that at the one loop level the nonlinear σ -model
can be renormalized by using dimensional subtraction in such a way that the
defining functional equation is preserved.

The construction of the counterterms is based on the symmetry property
generated by a nilpotent operator s which transforms fields and external sources
in a BRST fashion. This operator is obtained as a linearized form of the functional
equation in the loop expansion.

Both the functional equation and the operator s express a hierarchy structure
of the Green functions. The ancestors at the top are given by the Green functions
involving only the external sources of the flat connection Fµ and the constrained
field φ0.

A weak power-counting theorem then follows stating that, although the num-
ber of divergent amplitudes is infinite, only a finite number of counterterms pa-
rameters has to be introduced in the effective action in order to make the theory
finite at one loop level while respecting the functional equation (fully symmetric
subtraction in the cohomological sense).

The counterterms are then a linear combination of the s-invariants. The weak
power-counting limits the number of invariants needed for the complete renor-
malization at the one-loop level. The amplitudes involving only insertions of the
composite operators F

µ
a and φ0 uniquely fix the coefficients of the local invariants

entering in the linear combination which parameterizes the one-loop counterterms.
All the remaining divergent amplitudes can be obtained by projection of the linear
combination on the appropriate monomials.

The structure of the counterterms reveals that both the pole parts and the
finite parts have to be properly fixed in order to maintain the validity of the
unsubtracted functional equation. Moreover by inspection one sees that some
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of the counterterms are not chiral invariant. These are associated to invariants
containing the external source of the constrained field φ0.

As an example we have derived the expressions for the counterterms of the
set of four-point functions. Amplitudes associated with monomials which are not
contained in this linear combination are convergent (although their superficial
degree of divergence may be non-negative).

In D = 4 the whole structure of one-loop divergences of the nonlinear σ -
model is determined in terms of the finite set of invariants with given coefficients
in Eq. (30). This allows to renormalize completely the theory at one-loop order.

We emphasize that the D-dimensional counterterms in Eq. (30) contain a
non-trivial dependence on mD . The latter gives rise to finite parts which prove
to be crucial in order to maintain the validity of the functional equation in the
recursive subtraction procedure at higher orders in the loop expansion.

A WEAK POWER-COUNTING FOR Jµ AND K0

Let G be a n-loop graph with I internal lines and a certain set of vertices
described by a collection of non-negative integers

{
V

(2)
J , V

(3)
J , V

(5)
J , . . . , V

(2p+1)
J , . . . ,

V
(2)
K0

, V
(4)
K0

, . . . , V
(2q)
K0

, . . . ,

V
(4)
φ , V

(6)
φ , . . . , V

(2r)
φ , . . .

}
.

V
(m)
J , m = 2 or m = 3, 5, 7, . . . denotes the number of vertices in G with the

insertion of one J and m φ’s. V
(m)
K0

, m = 2, 4, 6, . . . stands for the number of vertices
with the insertion of one K0 and m φ’s. Finally V

(m)
φ , m = 4, 6, 8, . . . denotes the

number of vertices with m φ’s and neither Jµ nor K0’s.
Vertices with one K0 do not contain derivatives. Vertices with one Jµ carry

one momentum while vertices with only φ’s carry two momenta.
In D dimensions the superficial degree of divergence for the graph G is

d(G) = nD − 2I +
∑

k

V
(k)
J + 2

∑
j

V
(j )
φ . (A.1)

Use of the Euler’s relation

I = n + V − 1 (A.2)

with

V =
∑

k

V
(k)
J +

∑
j

V
(j )
φ +

∑
l

V
(l)
K0

(A.3)
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gives

d(G) = (D − 2)n + 2 −
∑

k

V
(k)
J − 2

∑
l

V
(l)
K0

(A.4)

The above formula shows that at a given loop order n the maximum superficial
degree of divergence in the collection of graphs with NJ insertions of the composite
operator Fa

µ , NK0 insertions of the composite operator φ0 and no φ’s external legs
is obtained when the number of vertices V

(k)
J and V

(l)
K0

is as small as possible.
This configuration is achieved by connecting all Jµ’s and all K0’s along a chain

of propagators and by inserting a sufficient number of additional propagators
joining the above vertices in such a way to generate a n-loop graph. For that
purpose one needs NJ vertices with one Jµ and NK0 vertices with one K0. There
are NJ + NK0 lines in the external chain and n − 1 internal lines have to be added
in order to get a n-loop graph.

The superficial degree of divergence is thus

dmax(G) = Dn − (2(NJ + NK0 ) + 2(n − 1)) + NJ

= (D − 2)n + 2 − (NJ + 2NK0 ). (A.5)

dmax(G) < 0 if

NJ + 2NK0 > (D − 2)n + 2. (A.6)
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